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Abstract— Linear Actuator Robots (LARs) are frameworks
of high-extension linear actuators that can change shape
through the coordinated actuation of their members. The lack
of robustness of LARs constructed from rigid electromechanical
actuators motivates the development of LARs constructed from
compliant actuators. However, the limited load carrying ability
of compliant LARs requires intelligent control architecture
to maximize performance. We propose methods to compute
optimal control policies that provide for LAR locomotion while
maximizing structural stiffness to external forces.

I. INTRODUCTION

Linear actuator robotics is a class of robotic systems that
achieves shape change through the coordinated deformation
of a fixed topology of modules [1]–[3]. This shape change
can be used for a multitude of tasks including locomotion,
manipulation, and shape morphing (Fig. 1). These systems
have been built and proposed for space exploration and
search and rescue operations to maintain mobility in irregular
terrain and access small spaces for exploration and storage
[4]–[6]. More advanced LARs could utilize the shape change
by forming dynamic and self-erecting architecture, camou-
flaging by mimicking local topography, and interaction with
humans by forming useful objects like ramps, stairs, tables,
or chairs.

In previous work, LARs were constructed with rigid
electromechanical actuators. This rigid construction has the
critical disadvantage of robustness to shock. With no mech-
anism to absorb and dissipate energy, the rigid electrome-
chanical actuators break or jam after exposure to high impact
forces. This is an important limitation for space exploration
applications where the system must survive landing on the
planet and rolling or falling down in unstructured environ-
ments. For this reason, research on LARs has diminished
as focus shifted to tensegrity robotics. Tensegrity robots are
systems comprised of a set of rigid rods in pure compression
connected together by a network of cables in pure tension [7].
These systems have exhibited an inherent compliance that
allows them to withstand high impacts [8]. This compliance
is an important advancement over the current state of the
art LAR. However, tensegrity robots lack the dramatic shape
changing ability that LARs have and tensegrity robots are
difficult to control due to their complexity and nonlinear
coupling between components. Therefore, there is potential
for a LAR that is capable of withstanding high impact forces.

LARs constructed from compliant pneumatic reel actua-
tors may offer the robustness of the tensegrity robot with
the shape changing ability of LARs [9]. Prototypes of LARs
constructed with pneumatic reel actuators do exhibit energy
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Fig. 1: In this figure, a LAR composed of 108 linear actuators
and 34 vertices morphs from a pyramid to a cube (top right),
and locomotes with a crawling gate (bottom right).

Fig. 2: A tetrahedron constructed from Pneumatic Reel
Actuators. Links of this tetrahedron have an extension ratio
of 5.4:1. The volume of the robot in its largest configuration
is 160 times the volume of the robot in its smallest config-
uration.

absorbing qualities due to their compliance. However, these
compliant LARs do not have as high of a load carrying ability
as their electromechanical counterparts. The actuators can
buckle when the network assumes certain configurations. In
order to carry heavy loads, the LAR must stay in configura-
tions that provide the network with stiffness to gravitational
forces. Therefore, it is important to control a LAR in a way
that maximizes the network’s stiffness to expected forces.

Previous work on the control of LARs has not focused on
attaining any optimality conditions. In [10], distributed con-
trol is enabled by selecting a network topology in such a way
to reduce the kinematic complexity. These simple topologies
consist of a repeated graphical motif of a tetrahedron or
an octahedron and can be described as minimally rigid – a
property that simplifies the control and will be defined below.
However, the control techniques used by [10] do not apply to



arbitrary graph topologies. Other work has proposed simple
control algorithms employing repetitive punctuated rolling
gaits for locomotion of space exploration linear actuator
robots [11]. More recently, [12] used differential kinematics
to derive general solutions to kinematics and controllability
for arbitrary network topologies.

In this work, I investigate how to control a LAR that
maximizes the network’s stiffness to gravitational forces
and minimizes control input. This could have implications
on the load carrying ability of the network, disturbance
rejection during locomotion, and ability to assume certain
target configurations. In Section II I will describe the model
used to represent the LAR dynamics and the kinematic
constraints. In Section III I will describe the optimal control
approach and simulations showing their results. A discussion
of the results is given in Section IV. Section V contains
concluding remarks.

II. MODEL FORMALIZATION

A. Graph Theory

The linear actuator robot is mathematically represented
as a framework consisting of a graph and vertex positions.
The graph is denoted as G = {V,E} where V = {1, ..., n}
is a set of vertices (or nodes) and E ⊂ V xV is a set
of edges. The graph is connected, undirected, unweighted
and has a constant topology. In this paper, the vertices are
embedded in three dimensional space, R3, and have position
vectors pi = [pix, piy, piz]

T . We will use the terminology
of vertices and nodes interchangeably throughout this paper.
We define a position vector of the entire framework as
p = [pT1x, ..., p

T
nx, p

T
1y, ..., p

T
ny, p

T
1z, ..., p

T
nz]

T . The length of
an edge of the graph is the euclidean distance between the
nodes: Lij = ‖vj − vi‖.

B. Graph Rigidity

A rigid framework is defined as a framework where the
only possible motions of the vertices that can occur without
changes to the edge lengths are rigid body transformations
of the entire framework. A more detailed mathematical
definition of rigidity is given by Asimow and Roth, and
will not be repeated here [13]. A minimally rigid graph
is a rigid graph where the removal of any link causes
the graph to lose rigidity. These minimally rigid graphs
provide a lower bound on the number of links necessary
to constrain a certain number of vertices. When a linear
actuator robot is minimally rigid, the lengths of the actuators
can be changed independently of one another. Increasing
the number of actuators necessarily over constrains some of
the vertices of the network. Therefore, the lengths of some
linear actuators cannot be changed without other actuators
changing as well. An infinitesimally rigid framework is
rigid even to theoretically infinitesimal perturbations of the
vertices. For examples of non-rigid frameworks, minimally
rigid frameworks, rigid frameworks, and over-constrained
frameworks, see Fig 3.

(i) (ii) (iii) (iv)

Fig. 3: (i) A non-rigid framework. Arrows show the direction
nodes can be moved with no change to lengths. (ii) A
minimally infinitesimally rigid network. (iii) The network has
the same topology as (ii), and is rigid but not infinitesimally
rigid, and hence not controllable. No controlled motion is
possible in the direction of the arrows. (iv) An additional
edge is added to (ii), meaning the structure is no longer min-
imally rigid. Motions of the actuators must be coordinated,
and can not always be made independently.

C. Differential Kinematics

We can find the differential kinematics by taking the time
derivative of the lengths of the edges:

dL2
i,j

dt
= 2Li,jL̇i,j = 2(pi − pj)T ṗi + 2(pj − pi)T ṗj . (1)

Rewriting in matrix form


L̇i,j

L̇i,j

...

L̇i,j

 = R(x)


ẋ1
ẋ2
...
ẋn

 . (2)

In this equation, R(x) is a scaled version of the well
known rigidity matrix [13,14]. If the matrix R(x) is of
maximum rank, we say the framework is infinitesimally
rigid. While the properties rigidity and minimal rigidity are
determined simply by the topology of the graph, infinitesimal
rigidity is also dependent on the configuration x. Infinitesi-
mally rigid frameworks are a subset of rigid frameworks, but
the converse is not true.

D. Kinematic Constraints

Four types of physical constraints must be satisfied to
guarantee feasibility of a given framework (G, p). The first
of these constraints is that the lengths of all of the edges
must fall within a fixed minimum and maximum length range
that the linear actuators are capable of attaining. The actuator
length, Lij , is the length of the edge, eij , connecting vertices
i, j and is computed as the euclidean distance between the
two vertices. We can succinctly write this constraint using
the graph laplacian, L, and the Kronecker product:

L2
min ≤ pT [L⊗ Id]p ≤ L2

max (3)

The second type of physical constraint is that the actuators
cannot physically intersect each other. To determine if two
actuators within a framework cross, the minimum distance
between them must be greater than the diameter of the
actuators, dmin. If the actuators do not have a cylindrical
geometry, then dmin can be taken as the diameter of the



smallest circle that can be inscribed by the actuators cross-
sectional geometry. The minimum distance between actuators
connecting vertices i, j, and k, l is:

dklij = min‖(pi + α(pj − pi)− (pk + γ(pl − pk)‖ (4)

where α, γ ∈ (0, 1). The actuator collision constraint can
now be written as:

dklij ≥ dmin∀{i, j}, {k, l} ∈ E (5)

The third type of physical constraint is collision with the
environment. The linear actuator robot is obviously unable to
pass through obstacles it may encounter in the environment.
We can describe the motion of the LAR with respect to the
environments with the equation:

Ḟ = Cẋ (6)

where the C matrix relates the motion of the nodes (ẋ)
with the changing environment (Ḟ ). The exact form of
C can be determined based on how contact between the
structure and the environment is modeled. For our purposes,
we assume that nodes in contact with the environment do
not move.Adding these constraints to our dynamics equations
yields:

[
L̇

Ḟ

]
=

[
R
C

] [
ẋ
]
= Hẋ. (7)

If the system is infinitesimally minimally rigid, and a min-
imal set of constraints is applied that is linearly independent
of the link constraints, the combined matrix [RTCT ]T is full
rank and square, and hence invertible,

ẋ = H(x)−1

[
L̇

Ḟ

]
. (8)

If the system is not minimally rigid, then the network
is over-constrained and additional constraints on the lengths
of the actuators are needed to ensure feasibility of the
framework. This is the fourth type of constraint. In this case,
the differential kinematics can be written as:

ẋ = H(x)−1
m

[
˙Lm

˙Fm

]
(9)

s.t. Hs(x)

[
L̇

Ḟ

]
= 0. (10)

Where Lm and Fm is the minimal set of input lengths
needed for minimal rigidity which is related to the network
state x by the matrix H−1

m (x). Hs(x) describes the rela-
tionships between the minimal set of input lengths and the
over-constraining lengths.

III. OPTIMAL CONTROLLER

A. Problem Statement

In this section we examine how to control a LAR that
satisfies optimality conditions for some given penalty func-
tion. Specifically of interest here is how to control a LAR
that employs a punctuated rolling type gait in a manner
that maximizes the networks stiffness to gravitational forces
and minimizes control input. I identify two problems that
are relevant. The first is moving the network from one
configuration to another under an optimal control policy.
The second is to select an optimal configuration the network
should assume for tipping. Combing these two problem
together, we will find a set of control inputs that drives the
LAR from any feasible initial condition to the optimal tipping
configuration in a manner that minimizes a penalty function
based on the network’s stiffness and control input.

B. Optimal Control Policy

To find an optimal control policy, we use a variational
approach to the optimal control problem [15]. We seek an
admissible control input u∗ for a system subjected to the
dynamics

ẋ = H(x)−1u. (11)

which is described in more detail in Section II. This optimal
admissible control input should drive the system to follow
an admissible trajectory x∗ that minimizes our performance
measure:

J =

∫ tf

t0

[gTS(x)−TS(x)−1g

+ λuTH(x)−TH(x)−1u]dt

(12)

In the equation above, S(x) is the well known stiffness
matrix from the direct stiffness method [16], g is the expected
force acting upon the LAR like gravity, and λ is a scalar
weighting. We then formulate the following Hamiltonian
equation:

H = gTS(x)−TS(x)−1g

+ λuTH(x)−TH(x)−1u

+ pTH−1u

(13)

The necessary optimality conditions are

ẋ =
∂H
∂p

(14)

ṗ =
∂H
∂x

(15)

0 =
∂H
∂u

(16)

A two point boundary value problem can now be used
to solve the system of differential equations (14) - (16).
It should be noted that this analysis is able to incorporate
the equality constraints but does not capture the inequality
constraints discussed in Section II.



  
  

 

 
 

 

 

  
  

 

 
 

 

 

  
  

 

 
 

 

 

  
  

 

 
 

 

 

Fig. 4: Optimal trajectories for the tetrahedral LAR. The LAR is shown in its initial configuration (blue) and its optimal
tipping configuration (red). The path of the unconstrained node is shown in orange.

C. Optimal Tipping Configuration
The second problem of finding the optimal tipping con-

figuration will now be discussed. For the LAR to initiate a
tip, the center of mass of the LAR must exit the support
polygon, which is formed by the convex hull of the nodes
of the framework on the ground plane. The center of mass
of the LAR should exit the face of the support polygon that
is perpendicular to the desired direction of motion. If we
assume a lumped-mass model whereby the mass of the LAR
is concentrated at the nodes, we can express the center of
mass constraint as:

xCOM =Mx (17)

where M is a R3x3n mass matrix. The objective we will
minimize is the total deformation due to a unit force applied
to the network as it tips. The direction of this force is
dependent on the network orientation on impact with the
ground. We can write this optimization problem as:

minimize
x

‖S(x)f‖

subject to
xCOM =Mx

L2
min ≤ pT [L⊗ Id]p ≤ L2

max

dklij ≥ dmin ∀ {i, j}, {k, l} ∈ E
Ḟ = Cẋ

Hs(x)

[
L̇

Ḟ

]
= 0

(18)

D. Simulation

The optimization problems discussed in Section III-B and
Section III-C were simulated for a single tetrahedral LAR.
Optimal control policies were determined for the tetrahedral
structure that bring the LAR into the optimal tipping con-
figuration. A few examples of the optimal trajectories found
by this method are shown in Fig. 4.

IV. DISCUSSION

While the methods proposed in Section III work efficiently
for the single tetrahedral structure shown in Fig. 4 more
work needs to be done to fully characterize the performance
of the method on frameworks of varying topology. The
single tetrahedral LAR framework is the most basic three
dimensional case. As more actuators and vertices are added
to the LAR the framework may lose minimal rigidity and
the configuration space will grow significantly. There will
be an increasing need to fully represent all constraints and
more local minima with jeopardize our ability to find a
global minimum. This will drive the need to apply a direct
method approach to finding the optimal control policy that
can include the inequality constraints imposed by the robot
kinematics.

This paper focuses on network stiffness for the optimality
criterion. However, it may be interesting to consider other
metrics for optimal control. For example, one may want a
solution that encourages sparsity, minimum completion time,
or smoothest trajectory.



V. CONCLUSION

We have presented methods to optimally control LAR con-
figuration and determine optimal tipping configurations that
maximize the stiffness of the framework to external forces.
Although there is still much to improve on these techniques,
the methods proposed in this paper are the first time LAR
control policies have been placed within an optimal control
framework. This preliminary work encourages future work
on optimal control of LARs.
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